
ED 050 798

AUTHOR
TITLE
INSTITUTION
REPORT NO
PUB DATE
NOTE
AVAILABLE FROM

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

DOCUMENT RESUME

LI 002 861

Vallee, Jacques; Ludwig, Herbert
The DIRAC Language: Concepts and Facilities.
Stanford Univ., Calif. Computation Center.
R-1
May 70
53p.
Dr. J. Vallee, Stanford Electronics Laboratories,
Stanford University, Stanford, California 94305

EDRS Price MF-$0.65 HC Not Available from EDRS.
Data Bases, *Information Networks, *Information
Processing, Information Retrieval, *Information
Systems, *On Line Systems, *Programing Languages
DIRAC, Direct Access Project

ABSTRACT
The three documents contained in this report

describe an interactive retrieval language implemented for the IBM
360/67 of the Campus Faculty at Stanford University, between October
1969 and May 1970. The three reports are: (1) DIRAC--An Interactive
Retrieval Language with Computational Interface, (2) DIRAC--An
Overview of an Interactive Retrieval Language, and (3) Preliminary
Useros Guide. Two related documents are "Medical Data Management in
Time-Sharing: Findings of the DIRAC Project" (see LI 002 823) and
"Scientific Information Networks: A Case Study" (see LI 002 829). (MM)

"PERMISSION 10 REPRODUCE THIS COPY-
RIGHTR

ED
MATERIAL
G RANTED BY

BY MICROFICHE ONLY
AS N

70 ERIC AND ORGANIZATIONS OPERATING
UNDER AGREEMENTS WITH THE U.S. OFFICE
OF EDUCATION. FURTHER REPRODUCTION
OUTSIDE THE ERIC SYSTEM REQUIRES PER-
MISSION OF THE COPYRIGHT OWNER"

THE DIRAC LANGUAGE

CONCEPTS AND FACILITIES

REPORT NUMBER I
MAY 1970

JACQUES VALLEE

and
HERBERT LUDWIG

STANFORD UNIVERSITY
COMPUTATION CENTER

INFORMATION SYSTEMS

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DC/ NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

This report contains three documents describing an interactive

retrieval language implemented for the IBM 360/67 of the Campus

Facility at Stanford University, between October 1969 and May

1970.

1. DIRAC--An Interactive Retrieval language with Computational

Interface.

2. DIRAC--An Overview of an Interactive Retrieval language.

3. Preliminary-User's Guide.

DIRAC :

AN INTERACTIVE RETRIEVAL LANGUAGE WITH COMPUTATIONAL INTEPFACF

Jacques F.Vallee
Stanford University

Address: Dr.J.F.Vallee, Manager,
Information Systems
Conputation Center
Stanford University
Stanford, California 94305

DIRAC :

AN I UTERACT I VE RETRIEVAL LANGUAGE WITH COMPUTATIONAL INTERFACE

Jacrues F.Vallee
Stanford University

ABSTRACT

An interactive file-oriented language that allows

t!.e user to interface with a text-editor and with his on

FOr!TPAN or assembly language code has been implemented

for the IBM 360/67 computer of the Campus Facility at Stanford

University. The language is the first it a family of prototypes

used to test alternative formulations of file

organization problems connected with the storage and retrieval

of scientific records in an interactive mode. The current

aPrlications of DIRAC described in this article LISP

files of research data in astronomical and medical fields. It

operates exclusively in a time-sharing environment under the

Stanford time-sharing monitor. The article describes the system

and its applications from the point of view of language design

and of operating system support requirements.

Vallee page 1

DIRAC :

lilTEDACTIVE RETRIEVAL LANCUAGE MTH COMPUTATIONAL INTERFACP

Jacques F.Vallee

Stanford University

idespread activity has recently been directed at the

implementation of non - procedural languares dedicated to

data -base nanarenent. Typically, these systems allow their

user to specify retrieval, extraction and update actions to

he taken on his data, without requiring the intervention of

.1rogrammor. Not only are such systems financially attractive,

they also offer an opportunity to accelerate the flow of

information fron its source (such as a market or a cost center) to the

level where management decisions can he made most neaninFfully.(1)

Technical problems

The impact of such lanr.uages on the design and utilization

patterns of future date -hales is difficult to evaluate, but

three interesting facts do stand out when they are replaced within

the framework of traditional software: first, in spite of the convenience

of their external features that may include some on-line

display capahilities) their design and

implementation generally reflect the concepts of second-generation

file processing rather than those of the time-sharing, interactive

4

Vallee pa7e 2

environment. Second, the user finds linself locked inside a set of

lanpua-n commands that may he very sophisticated indeed PS on as h'

deals with basic file-oriented functions, but it is only with treat

difficulty that he can force information outside the system and into

!)roF,rans expresse in other high -level languagns. Third, all lanruac,n

features are aimed at the business user: to our knowleige, no

:-.0neralized file managrment system has yet been appliP1 to the solution

of a scientific problem; as a result, they do not take full a Ivantare o'

Cr insight rainnd by the designers of scientific systems intendel for

hf)th documentation anJ computation.

As the level of sophistication of the user community rises, and as

thn frontier between business and scientific procnssinr. becomes

less sharply defined, we feel that the three problem areas we have

mentioned can he expected to appear prominently among. the, obstacles

facing the developers of new data-base systems. The purpose of this article

is to explore these implementation difficulties from a technical point

of view, not to propose a universal solution. This can he best achieved

by describing some prototype experimentations currently conlucted at

Stanford University, and by reporting on the assets and liahilities

of the alternative formulations we have hypothesized for the three

points mentioned above.

We shall first briefly describe a modular prototype system that serves

as the basis for the current experiments. This description will center

on the language :design aspects of the system and on its user interface.

5

VallnP par 3

1. THE DIRAC LANGUAGE FAHILY.

Activities and levels of users

The language used in the currant interactive experiments, DIPAc-1,

is the first prototype in the family of information-oriented languar-'s

we have designed. The objective of this project is to facilitate

flPxihIn interaction with large files of scientific data. The language is

of thn non-procedural type and demands no previous computer exporiorce

on the part of the user. It allows creation, undatinr, bookkoeping and

validating operations as well as the quorying of data files;

these activities take place in conversational mode exclusively. To the

more sophisticated user, the DIRAC languages offer a simple intorfPcp witk

the Stanford text editor (WYLBUR) and to the systems programmer, they.

.make available a straightforward interface with FORTRAN that Hoes not

renuire intermediate storage of the extracted information outside of

the direct-access memory. (2)

The name DIRAC (DIRect ACcess) is intended to remind the user of

this fact. It also summarizes the five data types handle-I by the

language, respectively: Date, Integer, Real, Alphanumeric, Code.

Four operation modes

The user of DIRAC can apply to any file (that he is authorized to access

any command within one of the four sets grouped under the modes:

CREATE, UPDATE, STATUS and QUERY. The first of these nodes is a

privileged one, but this privilege can be extended to any user by the

data-base administrator at the tine of file creation: it consists in

the definition of a file or a series of inter-related files, according

to a terminology to be defined below, in both nomenclature and

6

page 4

structure. The result of the CREATE commands is the implementation of

a file schema whose information content, for the moment, is nil. This

schema can he evoked, however, by the UPDATE commands that trill start

filling the structured set with information drawn pithPr, from the

working data set operated or by the text editor, or directly from the

user's own terminal. Deletion and replacement commands are also available

at this point . A rather complex chaining structure is then

sunerinposnd to the information which is apparent to the user, an-I a

number of measures, still triggered by the UPDATr commands, are taken

to reduce the storage requirements and to guarantee the privacy of

the information as it is validated and stored.

In QUERY mode, the user can obtain information from and about any

SFLFCTed subset of his data.files, at any level of the structure. The

various commands that allow selection and extraction are described

below, after an overall summary of the data organizations recognized

by DIRAC. Finally, the STATUS mode provides the user or the CR Admi-

nistrator with up-to-date status reports where field identification,

description, statistics and validation information aro summarized

within a standard report form.

implicit and associative query

To illustrate the differences between the information processing

concepts of DIRAC and those of traditional procedural languages, one

could draw examples from a number of fields. Assume for instance, that

a certain attribute X of an ohject is measured by a real number, so

that.we might want to query the file for all objects having X greater

7

Vallee page 5

than 13.7: This is naturally possible under any system. At the same time,

the digits of this real number might have individual significance (in

part designations and in some library or medical codes this situation is

encountered). We may then be tempted to write something like:

X (> 13.7 AND DOES NOT CONTAIN 9.2)

The above statement is a valid selection rule in DIRAC. It will exclude

the values 19.2, 29.2, etc from the list of X values that exceed 13.7.

The ability to specify implicitly the accessing of deep levels of

the file structure, and to continue the query associatively, is also

present in DIRAC-1. For instance, consider the following information

stored in a list of file values called 'Address' in a customer file:

Customer 1 Customer 2 Customer 3

1302 La Plata Ave 205 E 32 street 13 Mission Blvd. I

New Brunswick Princeton Paris
Kansas New Jersey Illinois

Then the following DIRAC selection rules will be applicable:

Address(ANY) CONTAINS New ---- will select 1 and 2

Address(ALL) CONTAINS is ---- will select 3

Address(LAST) CONTAINS New ---- will select 2

We could then follow such a statement with a rule of the type:

Transaction(ASSOCIATED) a XYZ

Vallee page 6

The condition would then be applied only to those entries situated at

the same level in the information tree of the 'Transaction' list.

To enhance the string scanning capabilities of DIRAC, the character

(!) is used as a wild symbol. Thus the statement

Address(2) CONTAINS "r!n" ---- will select 1 (run in Brunswick)

and 2 (rin in Princeton)

These features, combined with the interpretive nature of the

system, serve to give the terminal user a capability for interacting

with his data that cannot be achieved in the procedural, batch-

processing environment.

2. THE DATA-BASE CONCEPT UNDER DIRAC.

Files and Records.

The concept of file is retained in DIRAC in spite of the fact that

its storage structure is never apparent to the user and in spite of

the confusion it may create for programmers who tend to relate it to

the file concept in procedural languages. It is difficult to propose

a more commonly undeFstood term for a collection of related records

containing data needed for subsequent processing. Use of the term

9

Vallee page 7

DATA-RASE
I I

I I

I I

DATA DATA
POOL POOL
M09 LO1

DAF#1

DAF#2

DAF#3 NNN,N

DATA
POOL
A03

Reference
File

SIF#1 SEF#2 SIF#3

PRIMARY FILE

Record

Field#1 Field#2

Subfield
#1

Record

Subfield
#2 2 i .

Figure 1: Structure Of the DIRAC Data-Base.

10

Vallee page 8

'Record' in this context raises fewer difficulties as long as it is

understood that within a given file, a recOord is a set of attributes

that serve to identify some entity in the real world. This set is

structured according to the general schema that characterizes the

file for DIRAC.

Fields and Subfields.

Again, to minimize the confusion between DIRAC and the procedural

languages in its environement, we identify as 'Field' an attribute

whose value is stored within a Record. Thus the name of a patient or

the date of an operation in a hospital file, the magnitude of a star

or the morphology of a galaxy in an astronomical application are

all examples of fields. Once identMed by the user, the fields are

declared to-DIRAC and named during file creation. They are then availa-

ble for any retrieval operation on the file.

An important characteristic attached to the field level is the Type

of the information it contains. This information may be real numeric,

integral, alphanumeric, coded, or a date form. The Type of each field,

as well as the number of basic fields that compose the Record, once

declared, are fixed, although in any given data record fields may, of

course, be missing (arid the storage structure is such that

the final physical record contains no space for that attribute). But

any field may be multiple and it may then contain any number of

values, possibly with missing data among the list, for any real record.

Such values are called Subfields. They have the same type as the field

itself and may be addressed individually, as will be seen below.

it

Vallee page 9

Structure is the main parameter that varies from one language to

another in the DIRAC family. The first prototype does not allow the

extension of the tree-structure subdivision below the subfield level.

Deeper structures, such as non-cyclic graphs, have been designed

and their implementation will begin with DIRAC-2 to permit systematic

studies of system performance (overhead minimization in particular)

as a function of structure complexity.

Structures above the File level.

As convenient as it is for user communication, the concept of

file is clearly inadequate in a non-procedural system. Since there is a

severe limit to the amount of time the user of a so-called 'conversational'

system is willing to spend at a terminal waiting for a response, the

interactive concept is not compatible with serial file processing.

Besides, in a language that allows browsing, the system must dynamically

retain information on the user and his past transactions with

the data-base. Thus the state of the information at any given time is

not necessarily predictable. Intermediate records have to be constructed

and retained at several stages of the input/output process. These in

turn may be viewed as true files in their own right, and the inter-

relationships between these satellite files and the primary data file

may grow extremely complex.

DIRAC-1 recognizes an information organization displayed on fig.1.

The primary file is 'assisted' by at least one and at most fifteen

satellite files, in the sense just described. Some of them accumulate

system information (SIF) while others serve as auxiliary data files

and are mostly useful it supporting the inverting facilities; these

12

Vallee page 10

merely point to the main file (DAF). A primary file, together with

its satellites, is called a DATA POOL. The set of all data pools

constitutes the data-base. A DIRAC-1 user with full update and

query privileges (such as the DB administrator) can query in turn any

data pool that has ever been CREATEd under the language; he can also

change its contents down to the subfield level without having to issue

any operating system command and without having to reinitialize or

reload DIRAC. The implications of this language constraint on the

system which supports the physical files generated by DIRAC are studied

in Part Four of this article. Before we turn to the implementation

mechanism, however, it is necessary to discuss in more detail the

interactions between such a system and its on-line users.

3. SOFTWARE SUPPORT OF PUBLIC INFORMATION NETWORKS.

The environment

One of the major application areas of a language such as DIRAC

is found in the support of information systems, in particular those

that give remotely-located scientific users a direct link to their

data-bases while providing them with a computational facility. In

this section we shall describe the flow of information through

such a network in the light of the processing operations that are

at the disposal of a DIRAC user in QUERY mode.

In order to illustrate this discussion, examples will be drawn

from two data pools that have been sufficiently tested under the

DIRAC system in recent months to guarantee that they do in fact

13

Vallee page 11

indicate patterns of general interest. The first application

centers on a hematology file where each record contains all the

information obtained in a bone marrow analysis, including textual

data such as clinical history of a patient and doctor's impression.

The second application uses the Preliminary Warsaw catalogue of

Supernovae, that was converted to machine-readable form in the course

of this project; this astronomical catalogue is an ideal test as it

contains all the available physical parameters on the known supernovae

as well as the titles, authors, references and coded contents of the

articles that have been published about them.

Access to the data-base.

Figure 2 illustrates the hierarchy of access paths to the data-base

under DIRAC-1. In addition to the DB Administrator, three levels of

network users are recognized.. At level 1, the QUERY mode is the only

one invoked. At level 2, UPDATE takes place, with an input interface

with the text editor (WYLBUR). At level 3, the users are systems

programmers who have full use of the text editor like level 2 users,

but also utilize the FORTRAN/DIRAC interface to apply statistical

routines or other computational packages to information extracted

from one or several data pools. Under the text editor, all users have at

their disposal display, list, punch and edition facilities that can be

used to enhance the report generator supplied under DIRAC. Thus it is

quite conceivable that, at one end of the spectrum, we shall find

people querying data files exclusively within DIRAC commands, while others

will simply view the whole Data-base management system as an input-output

channel towards the text editor or towards FORTRAN. Nothing should prevent

14

Vallee page 12

Leve 1: Query

"an marl

Level 2: Update

DATA-BASE

Level 3: Programming

DP1

DP2

DP3

DP4

DP5

DP6

=============================M=============

. TEXT EDITOR

FORTRAN

Input
Data
Sets

-Display
-Punch

-List offline
-Full edition

facility

Input
Routines

tapesother
programs

Output
Data
Sets

= = =- = = = =

Extracted
information

utput Output

=.=

Special Systems

1

Plot/Display
routines

Statistical
Packages

Full Computational
Facility

Figure 2: Hierarchy of access paths to the DIRAC Data-Base:
A,problem of interfaces.

15

16 Vallee page 13

such a variety of usage, since the pure 'retrieval' phase may be only a

step in a very complex processing activity which takes place outside

the scope of DIRAC. In attempting to cover such complex activities within

a single framework, a generalized system would necessarily become

cumbersome and would mist its major objective, which is to facilitate

the communication of information among its users.

Survey of interrogation commands

There are five fundamental commands utilized in QUERY mode:

- The SELECT command initializes the definition of a sequence

of selection rules that define a subset of the primary data file.

- The DISPLAY command is used to type out information about the

.particular subset currently selected. When the volume of information

is large, however, the DISPLAY action can be triggered through the

text editor (The command typed at the terminal is then 'DISPLAY

WYLBUR') and printing can be done off-line on a high-speed printer.

- The RETAIN command is used to save the current subset. The resulting

records are usually processed again by further selection until the

search has been narrowed to the desired information.

- The RELEASE command completes the browsing facility by allowing

re-Initialization of the search to the entire file. In later

versions of DIRAC this command will be combined with a subset

designation to allow a hierarchy of embedded subsets rather

Vallee page 14

than the simple concept of a single filter, as currently

implemented in DIRAC-1.

- The EXTRACT command, similar in form to the DISPLAY command,

transmits specified information through a computational

interface with FORTRAN. User's own code can then operate along

with DIRAC modules to achieve complex computations that are not

possible within the basic file-oriented commands. As a default,

the current implementation generates cross-tabulation of extracted

fields and can be expanded to include standard post-processing for

any particular application.

Figure 3 is an example of the on-line query of the Supernovae

Catalogue implemented under DIRAC-1. The user is an astronomer who

studies supernovae in the Virgo cluster. He first wants to know how

many are false or suspected. The system finds one, and he displays

the supernova number and the recession velocity, Vs. It will be

noted that 'DIRAC processes information in both upper and lower case,

thus simplifying the handling of textual data, especially in the

scientific field.

The user then wants to determine how many true supernovae in Virgo

have a known Vs. The answer. is 19. Restricting the search by use of

the RETAIN command, he adds the rule:

1000 km/s << Vs <0 2000 km/s

17

18

QUERY
FILE IDENTIFICATION

A010
ACTION

SELECT
SELECTION RULES

Cluster CONTAINS Virgo END

24 RECORDS SELECTED
ACTION

RETAIN
ACTION

SN CONTAINS s END

1 RECORDS SELECTED
ACTION

DISPLAY SN Vs Cluster

SN s1922alpha
Vs 1243
Cluster .Virgo

1 RECORDS SELECTED
ACTION

RELEASE
ACTION

Cluster CONTAINS Virgo AND SN DOES NOT
CONTAIN s END

23 RECORDS SELECTED
ACTION

RETAIN
ACTION

Vs EXISTS END

19 RECORDS SELECTED
ACTION

Vs (<=2000 AND >=1000)END

11 RECORDS SELECTED
ACTION

Sources(FIRST) CONTAINS "Mt.WIlson" END

1 RECORDS SELECTED
ACTION

Vallee pare 15

DISPLAY SN Vs 12 b2 Sources END

SN 1901b
Vs 1617
12
b2

271.15
76.90

Sources 1 Ap.J.,88(1938),285-304- Contr.Mt.Wilson, 25 (1938) No.600
2 XIV Colloque Intern.Astrophys., Paris (1941), 186, 188.
3 Annales Observ.de Paris, 9 (1945) fasc.1, 165-179.
4 Astronomie 55 (1941), 78, 106.
5 Astronomie 63 (1949), 68.
6

41111=f

Figure 3: On-line interrogation of an astronomical catalogue

Vallee page 16.

The answer is 11. Among these, the astronomer wants DIRAC to locate

a supernova for which the first article given as reference has

"Mt.Wilson" as its source. DIRAC locates supernova number 1901b.

The user is now able to have the velocity, galactic coordinates,

and all the literature about the object typed out on the terminal.

Under the DISPLAY command, it is possible to restrict the output

to the LIST of selected records, or even to their NUMBER only. Alterna-

tively, the DISPLAY ALL command will generate a complete listing of the

information in the current subset. When combined with the text editor

interface, these commands give the user a flexible report

generation capability.

A second example, shown on figure 4, will serve to illustrate

further the usefulness of the system in dealing with textual Information

expressed in natural-language strings rather than in codes or numbers.

This situation is typical of many medical applications where very few

queries indeed can be anticipated at the time of file implementation,

and where the researcher must rely on the ability of the system to allow

flexible interaction with the data at run time

On the example of figure 4, the commands RETAIN and RELEASE have

not been used; one can see alternative formulations of the

selection rules as well as the nesting facility allowed in DIRAC.

It should be noted that the query commands of an interactive

system need not be as sophisticated as those of a batch system:

In the latter case, the user must be able to anticipate very

19

20
Vallee page 17

ACTION
SELECT

SELECTION RULES
date < 196911i6 AND date >= 19691115
END

7 RECORDS SELECTED

ACTION
date<691126 AND date >=19691115
AND (History CONTAINS "Hodgkin"

: OR Smear CONTAINS "red cell") END

6 RECORDS SELECTED

ACTION
date (< 691126 AND >= 691115) AND (History
CONTAINS "Hodgkin" OR Smear CONTAINS "red cell")
AND Aspirate EXISTS AND Impression CONTAINS thrombocytopenia
END

1 RECORDS SELECTED

ACTION
DISPLAY ALL

Record
Patient
Age
Room
Marrow
Doctor
Date
History

Smear

Aspirate

Impression

305847
XXXXXXXX
48 yr
E2A
B69-687
Dr.Z.Lucas
24/NOV/1969
48-yr old male 2 months post renal traAsplant. Decreased
platelets, WBC and PCV, but increased retics. Hemolysis
workup in progress.
Microangiopathic changes are seen. Polychromatophilia is
noted. Red cells are of varying size and shape. Nucleate
red cells are present. Platelets are low. There are
immature myeloid elements.
The red cell activity is increased. Occasional
megakaryocytes are present.
There is thrombocytopenia with some megakaryocytes in
marrow. The smear suggests marked red cell activity, as
seen with hemolysis. The possibility of extramedullary
hematopoiesis is also to be considered.

ACTION
END

AT THIS POINT YOU CAN EXIT (BY TYPING AN EXCLAMATION MARK)
OR SPECIFY A NEW EXECUTION MODE

Figure 4: On-line interrogation of a medical file showing various

levels of query complexity.

Vallee page 18

minute details of the information he is addressing; in the

interactive mode general queries can be refined by successive

selection rules until the desired subset is obtained, and the

process is continuously controlled by the user.

4. THE CURRENT IMPLEMENTATION

In its current state on the computer we have at our disposal,

DIRAC relies on a time-sharing submonitor that operates under

the 0S/360-HASP system. This submonitor provides the ability to

execute user programs in a time-shared mode, and it supports the

DIRAC data-base on the 2314 disks.

The basic concept under this system is that of ownership of files

by a group of users, the disk space held by the group being charged

to the account number by which it is known to the computer. Access

to a file may be extended by the owner of a file to any other group,

and the owner may also deny such access, or extend more privileges

to the public (defined as the 'group' that consists of all account

numbers validated for terminal use.)

Index records are used to keep pointers to those records that

exist. Input/output under the system consists of a request for a

service, followed by a wait for completion. DIRAC passes an ATTACH

command to the system for every file it uses. This is accomplished

by executing a macro that specifies:

21

Vallee page 19

- The class of device to be attached

- The name of the file

- The availabli!ty of the file to other tasks in execution

All files under DIRAC are attached in shared mode.

The system actually maintains records of 2048 bytes, core storage

being divided into pages of 4096 bytes each. A buffer area may not

cross more than one paze boundary: thus, a 4K buffer may begin

anywhere but an 8K buffer must begin on a 4K boundary. DIRAC records

are blocked into such 8K buffers, and indeed a single data record

may use all of 8192 bytes if the user so specifies. The Ii0 operations

result in the handling of four physical records under the system.

Reliance on this physical file implementation in DIRAC is limited

in fact to only two modules. The interface has been defined in such

a way as to allow DIRAC to run under a different system with a

minimum amount of recoding.

The main novelty in the design of DIRAC is the concept of a

generalized file management system that interfaces with, and can be

driven from, an interactive text editor. This concept makes,it possible

to implement catalogued interrogations and complex report generation

with minimum cdifficu.ftr.

The second feature in DIRAC that we feel points to a. solution of

the scientific data-base problem is the opportunity given the user to

branch freely into his own code once the basic retrieval function

22

Vallee page 20

has been accomplished, on a record-by-record basis. Thus an environ-

ment is created where non-procedural commands can interface optimally

with user-supplied routines.

Reference:

(1) Survey of Generalized Data Base Management Systems.

CODASYL Systems Committee, 1969.

(2) WYLBUR Reference Manual. Stanford University Computation

Center. Stanford, California.

23.

DIRAC
An Overview of An interactive Retrieval Language

by

J. Vallee and H. Ludwig
Stanford University

24

1. INTRODUCTION

The language described here is the first prototype in a family of
information oriented languages studied at the Stanford Computation
Center. The objective of the project is to expand the services
currently offered by the Campus Facility in application areas that
demand flexible interaction with large files and to generate ideas and
techniques applicable to industrial situations. The language is called
DIRAC. It is non-procedural and demands no previous computer experience
on the part of the user. It allows creation, updating, bookkeeping
operations, and the querying of data files in conversational mode under
a time-sharing monitor on the IBM 360/67. it interfaces with the
Stanford text editor, WYLBUR, and with the user's own FORTRAN code when
complex computations on the contents of the files are required.

2. THE DIRAC SYSTEM

DIRAC (Date, Integer, Real, Alphanumeric and Coded) is an
information retrieval language which provides the, user the ability to
operate under four modes: CREATE, UPDATE, QUERY and STATUS.

(1) The CREATE mode allows the user to completely define
the terminology and structure of his own file.

(2) The UPDATE mode allows such operations as adding,
deleting or replacing records.

(3) The QUERY mode of DIRAC allows the user to obtain
information about SELECTed subsets of his file at
any level of the record structure. The different
commands through which a file may be queried are
described in this article.

(4) The STATUS mode provides the user with an up-to-date
status report for his particular file. Field
identification, description of the fields, statis-
tics and validation information are displayed in a
standard report form.

3. FILE STRUCTURES FOR DIRAC

3.1 Files and Records

A file is defined here as a collection of related records
containing data needed for subsequent processing. This need may arise
in the regular course of a routine utilization of the data.
Alternatively, it may be necessary to answer unpredictable queries about
a file, and the latter situation causes many difficulties under
standard, procedural languages. DIRAC addresses itself to the need of
facilitating data retrieval in response to inquiries and requests for
special analysis.

- 1-

25

3.2 Fields and Subfields

Within a DIRAC record every attribute is identified as an indi-
vidual field: a patient's name in a hospital record, a social
security number, a charge account number are all examples of Fields.
Once identified by the user, the fiefs are declared to DIRAC and named
during file creation. They are then available for any type of retrieval
response from the file. Fields of a record can be numeric integer such
as a charge number, numeric real such as purchases within that charge
account (xx.xx), alphabetic such as name or address; they can also be
dates or codes.

A record consists of fields which may themselves be formed from two
or more subfields. This process of subdivision (tree structure) can
theoretically be continued.

File

Record Record

z I
Field 1 Field 2 Field 3/ \

Field 2 Field 2
(subfld 1) (subfld 2)

However, in the first version of DIRAC representations will not be
supported beyond the subfield level. Such data structures will be
introduced beginning with DIRAC-2 mhen a suitable data base has been
constructed. (full compatibility between the two languages being
preserved) .

3.3 Setting up a File Under DIRAC

DIRAC provides the user with the opportunity to completely specify
his own file organization. Thus, the user does not have to be concerned
about using a fixed field or fixed word type of format. The user is
not bound by a set of rigid rules pertaining to record size, length,
etc., and these parameters are not even apparent to him.

The user should first compile a working list of all fields which he
wants contained in a record, specifying whether or not a field is
singular or multiple (subfields). Example: Suppose that we were to
create a DIRAC file of patients for a hospital; we have determined that

-26-2

we wanted to include the following information (fields) in a patient's
record:

Patient's Name
Home Address
Age
Blood Type
Sex
Marital Status
Doctor(s)
Date(s) of Examination
Diagnosis
Remarks or Impressions

A typical Patient Record would have the structure:

Name

John L. Smith

Address

Doctors Dates

Age Blood Sex M.Stat.

1481

Diagnosis

AB

Remarks

Single

1st Exam.
2nd Exam.
3rd Exam.

Note that the fields Address, Doctor, Date, Diagnosis, and Remarks are
multiple. In other words a given patient might have seen several
doctors over the past year(s); some of the doctors possibly appearing
several times in the list. In each examination, which took place on a

'given date, a diagnosis was made and some remarks were recorded by the
doctor.

The user must also determine the "type" of each field which he
Includes as part of a record. For example, patient's name would be
alphanumeric (ALPHA), whereas age probably would be integer Blood type
and sex could be either alpha or coded in the example given above.

After determining the type of each field and whether or not that
field is singular or multiple, the fields can be numbered as follows:

- 3

27

28

FIELD

1

2

3

NAME

Name
Address
Age

DESCRIPTION

Patient's Name
Patient's Home Address

OM

4 Type Blood Type
5 Sex
6 Status Marital Status
7 Doctors Doctors Seen by Patient
8 Date Date(s) Seen
9 Diagnosis
10 Impression General Remarks by Doctor

A delimiter will be picked from a set of special characters (such as
@,$,#) to denote a field in DIRAC. (The user can pick any delimiter out
of the liNt which is convenient to him, thus, avoiding the need for a
rigid standard notation imposed by most existing systems.)

DIRAC will prompt the user for Type and Multiplicity of the fields
within a record. In our example the following information would then be
typed at the terminal: (the underlined portions are the prompts of
DIRAC) prompts of DIRAC)

TYPE AND MULTIPLICITY

INTEGER SINGLE @3
ALPHA SINGLE @1 @2 @4 @6 @5
ALPHA MULTIPLE @7 @9 @10
DATE MULTIPLE @8

The user should note that field specifications can be input in any
order. Also note that the delimiter "@" was used to speci?y fields.
"Integer Single" means that the value to be stored in field 3 will be a
single integer number. "Alpha Multiple" means that there EXISTS a
multiple field in which alphanumeric information is stored. From the
example we note that fields @7 @10 are multiple. Thus, when reference
is made to @7(1) -- the name of a doctor -- the date, diagnosis, and
impression for that visit are contained in @8(1), @9(1), @10(1),
respectively.

3.4 Actual Input into a DIRAC File

Once the file has been specified by the user to DIRAC, the user
will start updating this empty structure. DIRAC file. DIRAC will
prompt the user with "NEW". The user can now input information into the
DIRAC file under the following rules:

(1) Fields can be listed in any order and without regard for
information length.

(2) Empty fields need not be listed.
(3) In the "multiple" case subfields can be listed

in any order and empty subfields need not be
defined.

(4) Alpha values must be enclosed in quotes if the string
contains a delimeter or a blank.
). (, >, ?. *

- 4 -

29

EXAMPLE:

@1 "John Smith" -

@2 "1426 So. Magnolia St., San Francisco, Calif."
@3 28
@5 M
@4 A
@10(2) "Prescribed long rest in bed"
@10(3) "Quarentined for one month"
@7(1) "Dr. Jones"
@7(2) "Dr. Paul Woodward"
@7(3) "Dr. William Lowell"
@9(2) "Minor Cold"
@9(3) Measles
@9(1) Flu
@8(2) "3-2-68"
@8(3) "4-3-69"
@8(1) "2-4-68"

One record has now been generated and input into the DIRAC file. To
start a new record the user must type the word NEW (All commands to
DIRAC must be capitalized. The information that goes into the file,
however, may contain any character, in upper or lower case, from the
terminal character set, with the exception that quotes may not appear
within a string): All following records are treated in a similar
manner. In the above example John Smith visited Dr. Jones on April 3,
1968. It was diagnosed that he had the flu and no remarks were made!

4. DIRAC "QUERY" MODE

In this general presentation of the language we shall describe only
the five fundamental commands utilized by the DIRAC query mode.

(1) SELECT - Initializes the definition of a sequence of
SELECTIon rules that define a subset of the
data MP.

(2) EXTRACT - Used to transmit specific field information
from a record through a computational inter-
face with FORTRAN. As a default, this com-
mand will generate cross-tabulations among the
extracted fields.

(3) RETAIN - Used after the Select command has been execu-
ted to save the current subset. The resulting
records are usually processed again by further
SELECTion until the search has been narrowed
to the desired information--this is equivalent to a
a "start browsing" command.

(4) DISPLAY - Used to print out information obtained through
Select commands. If the volume of information
is large then printing can be done offline
on high speed printer.

- 5

(5) RELEASE - In contrast to the RETAIN command, this re-
initializes the search to the entire data file.

4.1 The SELECT Command

The SELECT command permits interrogation of a set of specified fields by
the following SELECTion rules. The user may write:

(Field Name or Number) DOES NOT CONTAIN (value)

- -- CONTAINS (Value) for alpha, coded
or real fields

=,<,>,<=,>= (Value)

--- EXISTS for any field

- DOES NOT EXIST

where "Value" is real, integer, or alpha, depending on the mode of the
operand. The above SELECTien rules can also be combined into a logical
expression of any length and complexity.

EXAMPLE:

ACTION
SELECT

SELECTION RULES
@7<19691126 END

Field 7 is tested and all records where field 7 EXISTS and has a value
less than 19691126 are SELECTed.

EXAMPLE:

ACTION
SELECT

SELECTION RULES
A7<1961126 AND @7 >= 1961115 END

All records whose field 7 is less than 19691126 and greater than or
equal to 19691115 are SELECTed; the first date form has been
automatically restored to year 1969.

EXAMPLE:

ACTION
SELECT

SELECTION RULES
@3<35 AND @3 >=25
AND 07(1) CONTAINS "Jones" OR @9(1) CONTAINS "Flu") END

All records whose field 3 is less than 35 and greater than or equal
whose field 9, subfield 1, CONTAINS the word "Flu" are SELECTed.

6 -.

30

EXAMPLE:

Action
: SELECT
SELECTION RULE$

@3 (<35 AND >=25) AND (@7(1) CONTAINS "Jones"
OR @9(1) CONTAINS "Flu")
AND @10 EXISTS
AND @2 CONTAINS "Calif." ENT)

All records whose field 3 is less than 35 and greater than or equal to
25 AND whose field 7, subfield 1, CONTAINS the word "Jones" OR whose
field 9, subfield 1, CONTAINS the word "Flu" AND whose field 10 EXISTS
and whose field 2 CONTAINS the word "Calif." are SELECTed.

The need to actually type the command SELECT after the prompt
ACTION is optional: To speed up user-machine interaction, DIRAC assumes
that anything that does not begin with a command at this point must be a
SELECTIon rule. If an error is encountered, it is then diagnosed as an
error in a SELECTion rule and recovery proceeds accordingly.

EXAMPLE:

ACTION
@9 CONTAINS .5 END

In every record where it EXISTS, field number 9 will be scanned to
determine whether Vt CONTAINS a decimal point followed by the digit 5.
This will retrieve records where field 9 contains a real number such as
.51,19.595, 0.519622, etc. (This rule may appear obscure in a strictly
numerical sense. In
library 'or medical applications, however, the digits'of a real number
may have individual meaning and may be susceptible to SELECTion as such)

4.2 The EXTRACT Command

In some cases the user wishes to access DIRAC records only as a
preliminary step in a more complex computational program. Such a
computational interface exists in DIRAC and functions as follows. The
user writes

EXTRACT(List of fields) END

ACTION
Name EXISTS AND Age<25
AND Type. CONTAINS' AR END

5 RECORDS SELECTED

ACTION
EXTRACT Name END

- 7 -

31.

All records are SELECTed for which Name (@1 - Name of Patient) EXISTS
AND Age (@3 - Age of Patient) is less than 25 AND Type (@4 - Blood Type
of Patient) contains the letters AB. Five records were found to satisfy
this logical expression. From these 5 records "Name" was extracted.
(Exhibit A)

4.3 The RETAIN/RELEASE Commands

The RETAIN command allows the user to keep (RETAIN) those records
which have just been SELECTed and apply another SELECT command to that
seta The user can thus narrow down a given set of records until the
desired set is obtained by using the RETAIN command.

EXAMPLE:

ACTION
@4 CONTAINS AR END

24 RECORDS SELECTED

ACTION
RETAIN

ACTION
@3 < 25 END

5 RECORDS SELECTED

ACTION
@5 CONTAINS F OR @5 CONTAINS FEMALE END

3 RECORDS SELECTED

ACTION
RELEASE

AMU
A3 <25 END

13 RECORDS SELECTED

The different blood types stored in field 4 are scanned for the letters
24 records are found to exist with this blood type. These 24

records are now RETAINed. From these 24 records now, field 3 is tested
for an age less than 25. 5 records are found to exist with Age less
than 25 in field 3. Field 5 for these. 5 records is now tested for a
value of F or the word FEMALE. One record is found. Note that the
RETAIN command, need only be exercised once to successively RETAIN
following SELECTed records. It serves essentially to define a "filter"
over the file while giving the user an interactive browsing facility.
When the whole file was tested for @3 < 25,.13 records were obtained,
thus the RELEASE.command allows the.user to address his SELECTion rules
to the whole file again after working under the RETAIN command as shown
above.

ACTION

EXAMPLE OF EXTRACT COMMAND

SELECT
SELECTION RULES

Name EXISTS AND (Age<25)
: AND Type CONTAINS AB END

5 RECORDS SELECTED

ACTION
EXTRACT Name END

5 RECORDS SELECTED

FIELD 1 TAKES 5 VALUES.

John Smith Howard Levin George Garth
Fred.Henny Frank, Mar :al

Exhibit A

- 9

33

4.4 The DISPLAY Command

This command is used when the user wishes to type out the
information obtained by the previous SELECT command., The user writes

DISPLAY(List of field names or numbers) END
or DISPLAY ALL
also DISPLAY NUMBER

DISPLAY LIST
DISPLAY (Record number)

(Note Exhibit B)

In many cases, however, the typing of the information in this form
is not practical, either because it is too long, or because several
copies are needed or because the extraction done through DIRAC is only
one step in a more complicated editing task. 7o solve this problem the
user writes

DISPLAY WYLBUR (List of fields) END
or DISPLAY WYLBUR ALL

WYLBUR is the name of the interactive text editor developed at
Stanford(*)

(*) see: "WYLBUR on the IBM 36-167: A Time Sharing, Fast Remote Batch,
Text Editing and Job-Shop System", by Rod Fredrickson. Available from
Information Services, Stanford University Computation Center. (Note
Exhibit C)

5. CONCLUSION

- An interactive retrieval language suitable for a widerange of
business, research and library applications has been proposed. A
prototype implementation for a particular computer (the IBM 360/67) is

.currently the object of experiments by the Information Systems group
at Stanford University. This non-procedural language is original in
two respects: first, it gives the user an opportunity to drive the
file creation and file update phases from the text editor. Extended
to the query phase, this concept leads to catalogued interrogations
and complex report generation. Thus, DIRAC represents a departure
from those retrieval languages that attempt to combine both the.text
editing and the file management features within a single package. We
believe the approach taken here leads to greater flexibility and
easier application to real-life processing situations.

Second, it provides a computational_interface with the user's own
code, at the same time avoiding the problems of the "host-language"
systems. DIRAC is. utilized at Stanford to build a data-base on which
file structures'of increasing complexity can be tested in a concrete,
quantitative manner.

- 10 -

34

DIRAC COMMANDS

ACTION
RETAIN

ACTION
Name EXISTS

64 RECORDS SELECTED

ACTION
Age < 20 AND Sex CONTAINS Male END

3 RECORDS SELECTED

ACTION
DISPLAY Name Age Sex Type END

18
Name John Smith
Age 19

Sex Male
Type AB

43
Name George Farmer
Age 18

Sex Male
Type AB

55
Name
Age
Sex
Type

Harold Price
18
Male
0

3 RECORDS SELECTED
ACTION

DISPLAY WYLBUR Name Age Sex Type
: END

3 RECORDS SELECTED

Exhibit B

35

WYLBUR DATA SET

?list
0.001
0.002 Name John Smith
0.003 Age 19

0.004 Sex Male
0.005 Type AB
0.006
0.007 Name George Farm
0.008 Age 18

0.009 Sex Male
0.01 Type AB
0.011
0.012 Name Harold Prico
0.013 Age 18
0.014 Sex Male
0.014 Type 0

Exhibit C

D - DATE
I - I NTEGER
fl - REAL
A - ALPIA'!U;IE:1I C
C - cor)En

FIRST VERS I Oil

PRE I !I I NARY USER IS GUIDE

36

TABLE OF CONTENTS
SECTION

Table of Contents

PAGE

1

1. .Introduction 2

2. The DIRAC System 2

3. File Structures for DIRAC

3.1 Files and Records 2

3.2 Fields and Subfields
3.3 Setting up a File Under

DIRAC
3.4 Actual Input into a' DIRAC,

5File

4. DIRAC "QUERY" Mode 6

4.1 The SELECT Command 7

4.2 The EXTRACT Command 8

4.3 The RETAIN Command 9

4.4 The DISPLAY Command 11
4.5 The RELEASE Command 11

5. Operation of DIRAC 13

5.1 CREATE Mode 13

5.2 UPDATE Mode
5.3 QUERY Mode 16
5.4 STATUS Mode 16

- 1 -

37

1. INTRODUCTION

The language described here is the First prototype in a
family of information oriented languages developed by the Stan-
ford Computation Center. The objective of the project is to
expand the services currently offerei by the Ca-Ipus Facility in
application areas that demand flexible interaction with large
files. The language is called DIRAC. It is non-procedural and
demands no previous computer experience on the part of the user.
It allows creation, updating, bookkeeping operations, and the
querying of data files in conversational mode. It interfaces with
the Stanford text editor, WYLSUR, and.with the user's own FOR.PAN
code when complex computations on the contents of the files are
required.

2. THE DURAC S'0,;TEh

DIRAC (Date, Integer, Seal, Alphanumeric, and Coded) is an
information retrieval language which provides the user the ability
to operate under four modes: CREATE, UPDATE, .UERY and STATUS.

(1) The CREATE mode allows the user to completely define
the terminoloc.;y and structure of h:s own file.

(2) The UPDATE mode allows such operations as adding,
deleting'or replacing records.

(3) The :MERV mole of D1'1A0 allows the user to obtain
information about SELECTed subsets of his file at
any level of the record structure. The different
commands through which a file may he queried are
described in this section.

(4) The STATUS mode is the fourth execution lode in
DIRAC. It provides the user with an up-to-date
status report for his particular File. Field
identification, description of the fields, statis-
tics and validation information are displayed in a
standard report form.

3. FILE STRUCTURES FOR DI:IAC

3.1 Files and Records

A file is defined here as a collection of related records containing
data needed for subsequent process i ng. This need Play arise in the reg-
ular course of a routine utilization of the data. Alternatively, it
may be necessary to answer unpredictable queries about a file, and
the latter situation causes many difficulties under standard, pro-
cedural languages. DIRAC addresses itself to the need of facili-
tating data retrieval in response to inquiries and requests for
special analysis.

- 2 -

38

3.2 Fields

Jithin a DIRAC record every attribute is identified as an indi-
vidual Field: a patient's name in a hospital record, a social se-
curity number, a charge account nuriber are all exalples of Fields.
Once identified by the user, the fields are declared to DIRAC and
named during file creation. They are then available for any type
of retrieval response from the file. Fields of a record can be
numeric integer such as a char7e number, numeric real such as purchases
within that charge account (xx.xx), alphabetic such as name or address;
they can also be dates or codes.

A record consists of fields which nay themselves be forned frol
two or .lore subfields. This process of subdivision (tree structure)
can theoretically be continued.

F; le

Record Record/ N
Field 1 Field 2 Field 3

Field 2 Field 2
(subfld 1). (subfld 2)

'iowever, in the first version of DIRAC representations will not be
supported beyond the subfield level. Such data structures will 5e
introduced beginning with DIRAC2 when a suitable data bashassbeen
constructed. (full co.npatibility between the two languages beina
preserved)

3.3 Settinz up a File Under DIRAC

DIRAC provides the user with the opportunity to completely
specify his own file organization. Thus, the user does not have
to be concerned about using a fixed field or fixed word type of for-
mat. The user is not bound by a set of ri71d rules pertaining to
record size, length, etc., and these paraieters are not even ap-
parent to hin.

- 3 -

39

The user should first compile a working list of all fields
which he wants contained in a record, specifying whether or not
a field is singular or multiple (subfields). Example: Suppose
that we were to create a DI RAC, file of patients for a hospital;
we have determined that we wanted to include the following entries
(fields) in a patient's record:

Patient's Mame
Nome Address
Age
Blood Type
Sex
Marital Status
Doctor(s)
Date(s) of Exa-lination
Diagnosis
Remarks or Impressions

A typical Patient- Record would have the structure:

Name

L-Pohn L. Smith.)

Address Age Blood Sex M.Stat.

AB I f M 1 3in71e43

Doctor's Dates Diagnosis , Remarks

L.,Filinsa -I XYZ I

1

1st Exam.
',- 122363 1 A3C 1

,....1
i 2nd Exam.

. 3rd Exam.

1111

Note that the fields Address, Doctor, Date, Diagnosis, and Renarks
are multiple. In other words a given patient might have seen
several doctors over the past year(s); some of the doctors possi-
bly appearing several times in the list. In each exailination,
which took place on a given date, a diagnosis was made and sore
remarks were recorded by the doctor.

The user must also determine the type of each field which he
includes as part of a record. For example, patient's name would
be alphanumeric (ALPHA), whereas age probably would be integer
Blood type and sex could be either aloha or coded in the exam-
ple given above.

- 4 -

40

41
After determining the type of each field and whether or not

that field is singular or multiple, the fields can be numbered as
follows:

F I ELD DESCRIPTION

1 Name Patient's Name
Address Patient's Home Address

3 Age ---
Type Blood Type

5 Sex ---
r; Status Marital Status
7 Doctors Doctors Seen by Patient

Date Date(s) Seen
9 DiagnosiS AM WO

10 Impression General Remarks by Doctor

A delioeter should now be picked frost the set -- ; $:

; @ --. This Jelimeter will now be usel to define a Field in
DIRAC. (The user should pick any delimeter out of the list which
is convenient to hio)

DIRAC will prompt the user for Type and Mult!plicity of the
Fiel -is within a record. In our exa-iple the following information
would be given to DIRAC by the user: (the underlined lines are the
prompts of DIRAC)

TYPE AND MULTIPLICITY

INTEGER SINGLE A3
ALPHA SINGLE Q1 @2 z14 OG 35

ALPHA MULTIPLE @7 @3 @10

The user should note that Field specifications can be input in any
order. Also note that the del imeter "d" was used to specify fields.
"Integer Single" oeans that the value to he stored in field 3 will
be a single integer number. "Alpha Multiple" means that there EXISTS
a multiple field in which alphanumeric information is stored. From
the example we note that fields TT - @10 are multiple. Thus, when
reference is made to Q7(1) -- the namP of a doctor -- the date,
diagnosis, and impression for that visit are contained in j8(1),
@J(1), Q1U(1), respectively.

3.4' Actual Input into a DIRAC File

Once the file structure has been specified by the user to
DIRAC, the user will want to input information (records) into the
DIRAC file. pIRAq will prompt the user with "NEW". The user can
now input information into the DIRAC file under the following
rules:

(1) Fields c;:n be listed in any order.
(2) Empty fields need not be listed.
(3) In the "multiple" case subfields can be listed

in any order and empty subfiells need not be
defined.

(4) Alpha values must be enclose-! in " if the string
CONTAINS the following symbols: Blank, *, (,

). >.

- 5 -

1.

EXAMPLE:

"d1 "John Smith"
J2 "1426 So. ilagnolia St., San Francisco, Calif."

23
j5 N
o4 A
11U(2) "Prescribed lon=; rest in bed"
j1J(3) "1.1uarentined for one month"
J7(1) "Dr. Jones"
17(2) "Dr. Paul ;Woodward!"
U7(3) "Dr. Uilliam Lowell"
UJ(2) "Ninor Cold"
j3(3) Measles
J9(1) Flu

"Viarch 2, 196f3"

j8(5) "April 3, 1'169"

jj(1) "Feb. 4, 191:43"

One record has now been generated and input into the DIRAC file.
To start a new record the user must type the word i'EU (All com-
Hands to DIRAC must be capitalized. The inforniation that goes
into the file, however, nay contain any character, in upper or
lower case, from the terminal character set, with the exception
that the character " .lay not appear within a strinq). Allfollow-
ing records are treated in a winner. In the above example
John S:lith visited Dr. Jones on Feb. 4., It was iiagnose
that he had the flu and no remarks were oade!

4. DMAC "lUERY"IIMODE

There are five
MOje.

fundamental colrianis utilized by the DInC query

(1) SELECT - Initializes the definition of a sequence of
SELECTion rules that define a subset of the
data file.

(2) EXTaCT - Used to transnit specific 1'Tel.! inforlation
from a record through n co mutational inter-
face with FORTI1AU. As a lefault, this con-
mand will generate cross-tabulations among the
extracted fiel Is.

(3) - Used after the Select con land has been execu-
ted to save the current subset. The resulting
records are usually processed again by further
SELECTion until the search has been narrowed
to the desired information.

(4) PISPLAY - Used to print out inforlavion obtained through
Select coolants. IF the volume of infuriation
is large then printing can be done offline
on hie.h speed printer.

42
- 6 -

(5) RELEASE - in contrast to the RUAIN command, this re-
initializes the search to the entire data file.

4.1 The "SELECT" Coomand

This com.aand will probably be the lost use: l by the user.
The SELECT comiand permits the user to interrogate a set or speci-
fied fields by the following SELECTion rules. The user -lay write:

(Field Name or Number) DOES NOT CONTAIN (value)

(Field Name or Number) CONTAINS (Value) for alpha, coded
or real fields

(Field Name or Number) =,<,>,<=d= (Value)

(Field dame or Nuober) EXISTS for any Field

(Field Nai..le or Number) DOES NOT EXIST

where "Value" is real , integer, or alpha, depeniing on the node of
the operand. The above SELECTion rules can also be combined into
a logical expression of any lenT,th and complexity.

EXAMPLE:

ACTION
SELECT

SELECTION RULES
47<19691126 END

Field'7 (j7-) is tested and all records where field 7 EXISTS and
has a value less than 1069112G are SELECTed.

EXAIIPLE:

AC ION
SELECT

SELECTION RULES
07<bJ1126 AND j7 >= 1961115 END

All records. whose field 7_ is less- than 591123 and ;renter than or
equal to 1691115 are:t.ELECT4d.

EXAMPLE:

ACTION
SELECT

SELECTION RULES .

j3<35 AND 03 >=25
AND (07.(1) CONTAINS "Jones" OR fj9(1) CONTAINS "Flu") END

All records whose field 3 is less than 35 and-greater than or equal
whose field 9, subfiel.d.1,. CONTAINS the word "Flu" are SELECTed.

- 7 -

43

EXAMPLE:

ACTION
SELECT

SELECTION RULES
03 (<35 AND >=25) AND (07(1) CONTAINS "Jones"
OR 2 9(1) CONTAINS "Flu")
AND 01J EXISTS
AND 2 CONTAINS "Calif." END

All records whose field 3 is less than 35 and greater than or equal
to 25 AND whose field 7, subfield 1, CONTAINS the word "Jones= 02
whoSe field 9, subfield 1, CONTAINS the word "Flu" AND whose field
10 EXISTS and whose field 2 CONTAINS the word "Calif." are SELECTed.

The need to type the command SELECT after the proript AcTm has
been elininated. DIRAC assumes that anything that does not begin
with a comAand at this point must be a SELECTion rule. If an error
is encountered, it is then diagnosed as an error in a SELECTion rule
and recovery proceeds accordingly.

The Selections can be applied to record fields under the fol-
lowing rules:

(1) For any "Al-pha", "Real", or "Coded"- field -- CONTAIN
or DOES NOT CONTAIN can be user!.

(2) For any field -- EXISTS or DOES NOT EXIST can be used.

(3) :Inequalities apply to all fields.

EXAMPLE:

ACTION
SELECT

SELECTION Raga
i!) CONTAINS .5 END'

In every record where it EXISTS, field number 9 will be scanned
to determine whether it CONTAINS a period followed hy the digit S.
(This rule may appear obscure in a strictly numerical sense. In

some library or aledical applications, however, the digits of a real
number may have individual :leaning and may he susceptible to
SELECTion as such)

4.2 The EXTRACT Co :land

In some cases the user wishes to access DIRAC records only as
a preliminary step in a more complex computational program. Such
a computational interface EXISTS in DIRAC and functions as follows.
The user writes

EXTRACT' (List of fields) END

- a -

44

EXAMPLE: (the following examples are drawn from an astronomy
file on supernovae. The field names and descriptions
are described in Appendix E. Knowledge of astronomy
is not necessary in order to understand the following
concepts)

ACTION.
Vs EXISTS AND Morphology EXISTS
AND Cluster CONTAINS Virgo END

23 RECORDS SELECTE

ACTION
EXTRACT Morphology END

All records are SELECTed for which Vs (@10 - Recession Velocity
in km/s) AND Morphology ((g8 - Morphology of Parent) exist AND
Cluster (@11 - Cluster Membership of Parent) CONTAINS the word
"Virgo". 23 records were found to satisfy this logical expression.
From these 23 records Morphology was extracted. (Exhibit A)

4.3 The RETAIN Command

The RETAIN command allows the user to keep (RETAIN) those
records which have just been SELECTed and apply another SELECT
command to that set. The user can thus narrow down a given set of
records until the desired set is obtained by using the RETAIN
command.

EXAMPLE:

ACTION
SELECT

SELECTION RULES
@11 CONTAINS Virgo END

24 RECORDS SELECTED

ACTION
RETAIN

ACTION
@1 CONTAINS S END

5 RECORDS SELECTED?

ACTION
@10 <999 END

1 RECORD SELECTEE)

The text stored in field 11 is scanned for the word "Virgo".
24 records are found to exist with this word. These 24 'records
are now RETAINed. From these 24 records now, field 1 is tested
for an "S". 5 records are found to exist with the letter S in

- 9 -

49

Example of EXTRACT Command

ACTION
SELECT

SELECTION RULES
Vs EXISTS AND Morphology EXISTS
AND Cluster CONTAINS Virgo END

23 RECORDS SELECTED

ACTION
EXTRACT Morphology END

23 RECORDS SELECTED

FIELD 8 TAKES 23 VALUES.

pec. Sb Sb Sb EO SB Sh EO E5 Sc
Sb El SBc Sb SBc SO E6 Sb SBc SO
Sb 1 EO

Exhibit A

- 10 -

46

field 1. Field 10 for these 5 records is now tested for values
less than 999. One record is found. Note that the RETAIN command
need only be exercised once to successively RETAIN following
SELECTed records. It serves essentially to define a "filter" over
the file while giving the user an interactive browsing facility.

4.4 The DISPLAY Command

This command is used when the user wishes to type out the
information obtained by the previous SELECT command. The user
writes

DISPLAY(List of field names or numbers) END
or DISPLAY ALL
also DISPLAY NUMBER

DISPLAY LiT
DISPLAY (Record number)

(Note Exhibit B)

In.some cases, however, the listing of the information in this
form is not practical, either because. it is too long, or because
several copies are needed or because the extraction done through
DIRAC is only one step in a more complicated editing task. To
solve this problem the user writes

DISPLAY WYLBUR (List of fields) END
or DISPLAY WYLBUR ALL

(Note Exhibit C)

4.5 The RELEASE Command

The RELEASE command allows the user to address his SELECTion
rutes.to the whole file again after working under the RETAIN command
for a while.

EXAMPLE:

ACTION
SELECT

SELECTION RULES
@11 CONTAINS Virgo END

24 RECORDS SELECTED

ACTION

ACTIOR

RETAIN

@1 CONTAINS S END

47
- 11 -

A
C
T
I
O
N

A
C
T
I
O
N

D
I
R
A
C

C
O
M
M
A
N
D
S

R
E
T
A
I
N

M
o
r
p
h
o
l
o
g
y

D
O
E
S

N
O
T

C
O
N
T
A
I
N

S
b

E
N
D

1
'
i

R
E
C
O
R
D
S

S
E
L
E
C
T
E
D

A
C
T
I
O
N

V
s

(
>
1
0
0
0

A
N
D

<
=

1
5
0
0
)

E
N
D

-
3

R
E
C
O
R
D
S

S
E
L
E
C
T
E
D

A
C
T
I
O
N

D
I
S
P
L
A
Y

S
N

V
s

C
L
U
S
T
E
R

M
o
r
p
h
o
l
o
g
y

E
N
D

?
l
i
s
t

1
8

S
N

1
9
1
9
a

O
h

V
s

1
2
6
1

0
0

C
l
u
s
t
e
r

V
i
r
g
o

M
o
r
p
h
o
l
o
g
y

E
0

8
9

S
N

1
9
6
0
f

V
s

1
2
4
0

C
l
u
s
t
e
r

V
i
r
g
o

M
o
r
p
h
o
l
o
g
y

S
B
c

2
4
6

S
N

s
1
9
2
2

a
l
p
h
a

V
s

1
2
4
3

C
l
u
s
t
e
r

V
i
r
g
o

M
o
r
p
h
o
l
o
g
y

E
O

3

R
E
C
O
R
D
S

S
E
L
E
C
T
E
D

A
C
T
I
O
N

.

D
I
S
P
L
A
Y

E
N
D

3

R
E
C
O
R
D
S

S
E
L
E
C
T
E
D

E
x
h
i
b
i
t

B

W
Y
L
B
U
R

D
A
T
A

S
E
T

0
.
0
0
1

0
.
0
0
2

S
N

1
9
1
9
a

1
0
.
0
0
3

V
s

1
2
6
1

0
.
0
0
4

C
l
u
s
t
e
r

V
i
r
g
o

0
.
0
0
5

M
o
r
p
h
o
l
o
g
y

E
D

I
0
.
0
0
6

0
.
0
0
7

S
N

1
9
6
0
f

0
.
0
0
8

V
s

1
2
4
0

0
.
0
0
9

C
l
u
s
t
e
r

V
i
r
g
o

0
.
0
1

M
o
r
p
h
o
l
o
g
y

S
B
c

0
.
0
1
1

0
.
0
1
2

S
N

s
1
9
2
2

0
.
0
1
3

V
s

1
2
4
3

i
0
.
0
1
4

C
l
u
s
t
e
r

V
i
r
g
o

0
.
0
1
5

M
o
r
p
h
o
l
o
g
y

E
O

S
N

V
s

C
l
u
s
t
e
r
'

M
o
r
p
h
o
l
o
g
y

1
2

-

E
x
h
i
b
i
t

C

a
l
p
h
a

. 1 RECORD SELECTED

ACTION

ACTION

RELEASE

@I. CONTAINS S END

65 RECORDS SELECTED

There are 65 records in this file where field 1 CONTAINS the letter
S, but only one such record was found among these records where
field 11 contained the word "Virgo". The user typed the command
RELEASE to reinitialize the search to the entire file.

5. PPERATION OF DIRAC

The following examples demonstrate the four execution modes
of DIRAC. The user should note how each mode is initiated.
DIRAC allows the user to exit from an execution mode either by
initiating a new mode -- responding to a prompt from DIRAC --
or by typing the word "END".

5.1 CREATE Mode

? use diracl clear load
1 UNRESOLVED REFERENCES

? enter

DIRAC VERSION 1

NAME OF USER
Smith

P LEASE TYPE EXECUTION MODE
CREATE

F ILE IDENTIFICATION
L020

CUMUL.TERMINAL TIME : 0.42 MIN
CUMUL.CPU TIME : 0.10 MIN

KEY FOR THIS MODE
Q

F ILE NAME
Supernova

F ILE "DESCRIPTION"
"Preliminary Catalogue of Supernovae"

D ISPOSITION (PUBLIC/PRIVATE)
PRIVATE

TYPE "LIST OF QUERY USERS"
"Smith Jones Johnson"

G IVE NOTATION FOR RECORD' AND FIELD
LEFT RECORD NUMBER DELIMITER

$

- 13 -

49

RIGHT RECORD NUMBER DELIMITER
$

LEFT FIELD NUMBER DELIMITER

RIGHT FIELD NUMBER DELIMITER
NONE

RECORD LENGTH
256

SUPPLY NAME AND "DESCRIPTION" OF ALL FIELDS
@1?

SN "Supernova Number"
@2?

zl "Zwicky I System"
@3?

NONE
SUPPLY DATA TYPE AND MULTIPLICITY

ALPHA SINGLE @1 @2 @3 @4 @9 (411(425 @26
INTEGER SINGLE @6 @7 @8 @36 @37
ALPHA MULTIPLE @5 @21
INTEGER MULTIPLE @22 @23
REAL SINGLE @39 @40
REAL MULTIPLE @15 @16

DEFINE "RECORD LOCATOR"
1111

DEFINE RECORD STRUCTURE
NONE

VALIDATION SPECIFICATIONS
@1 NECESSARY
@3 NECESSARY
@5 NECESSARY

NONE
THE FILE HAS NOW BEEN CREATED

AT THIS POINT YOU CAN EXIT (BY TYPING AN EXCLAMATION MARK)
OR SPECIFY A NEW EXECUTION MODE

5.2 UPDATE Mode

The UPDATE mode is utilized to fill a newly created file
with information or to alter the contents of a previously
updated file. The user should remember that during the CREATE
mode an 'empty' file was created, and that during the UPDATE
mode that file's contents are either supplied or altered.

- 14 -

50

? use diracl clear load
1 UNRESOLVED REFERENCES

? enter

DIRAC VERSION 1

NAME OF USER
Smith

PLEASE TYPE EXECUTION MODE
: UPDATE
FILE IDENTIFICATION

L020
CUMUL.TERMINAL TIME : 41.18 MIN

CUMUL.CPU TIME : 0.26 MIN

SPECIAL INPUT INTERFACE ?

** (press then attn key)
DO YOU WANT YOUR PROGRAM? no
SESSION BREAK, ATTENTION AT 71C240
? use Supernova
? CONTINUE
INCORRECT STATEMENT. PLEASE RETYPE :

WYLBUR
UPDATE COMPLETED ; MAX.RECORD LENGTH = 140
THE FILE CONTAINS 10 RECORDS

AT THIS POINT YOU CAN EXIT (BY TYPING AN EXCLAMATION MARK)
OR SPECIFY A NEW EXECUTION MODE

The above UPDATE procedure could also be simplified by the
following procedure:

? use diracl clear load
1 UNRESOLVED REFERENCES
use Supernova
enter

This eliminates the procedure of breaking out of DIRAC control in order
to fetch the Supernova records for input into the file. It eliminates
the statements between "SPECIAL INPUT INTERFACE ?" and "WYLBUR" in the
first example of the UPDATE mode.

- 15 -

51

5.3 OMY Mode

The QUERY execution mode has been sufficiently examined in Section
4 so that no further example will be given here at this time.

5.4 STATUS Mode

The user answers the prompt:

AT THIS POINT YOU CAN EXIT (BY TYPING AN EXCLAMATION POINT)
OR SPECIFY A NEW EXECUTION MODE

or

PLEASE TYPE EXECUTION MODE

with the word STATUS. He then receives the following, information
(Exhibit D). This status report is taken from the Supernova Catalogue.

52
- 16 -

S
T
A
N
F
O
R
D

U
N
I
V
E
R
S
I
T
Y

S
T
A
T
U
S

R
E
P
O
R
T

F
O
R

F
I
L
E

A
0
1
0

L
A
N
G
U
A
G
E
:

C
O
M
P
U
T
A
T
I
O
N

C
E
N
T
E
R

2
3
/
J
A
N
/
1
9
7
0

D
I
R
A
C
1

D
E
S
C
R
I
P
T
I
O
N

:
P
r
e
l
i
m
i
n
a
r
y

C
a
t
a
l
o
g
u
e

o
f

S
u
p
e
r
n
o
v
a
e

C
R
E
A
T
I
O
N

D
A
T
E

:
2
3
/
J
A
N
/
1
9
7
0

1
=

T
Y
P
E

F
I
L
E

N
A
M
E

:
S
u
p
e
r
n
o
v
a

R
E
C
O
R
D

N
O
T
A
T
I
O
N

.
4
$
N
$

2
=

M
U
L
T
I
P
L
I
C
I
T
Y

F
I
L
E

C
R
E
A
T
E
D

B
Y

:
V
a
l
l
e
e

F
I
E
L
D

N
O
T
A
T
I
O
N

:
O
F

3
=

I
N
D
E
X
I
N
G

R
E
C
O
R
D

L
E
N
G
T
H

:
1
0
2
4

D
I
S
P
O
S
I
T
I
O
N

:
P
U
B
L
I
C

4
=

C
O
D
E

R
E
S
I
D
E
N
C
E

N
O
.
O
F

F
I
E
L
D
S

:
2
3

N
O
.

O
F

R
E
C
O
R
D
S

:
2
5
9

5
=

C
O
D
E

T
Y
P
E

L
A
T
E
S
T

U
P
D
A
T
E

O
N

:
2
3
/
J
A
N
/
1
9
7
0

F
I
E
L
D

.
I
D
E
N
T
I
F
I
C
A
T
I
O
N
,

S
T
A
Z
I
S
T
I
C
S

A
N
D

V
A
L
I
D
A
T
I
O
N

I
N
F
O
R
M
A
T
I
O
N

S
T
O
R
A
G
E

V
A
L
I
D
A
T
I
O
N
S

S
T
A
T
I
S
T
I
C
S

E
X
I
S
T
E
N
C
E

F
L
D

'
N
A
M
E

D
E
S
C
R
I
P
T
I
O
N

1
2

3
4

5
N
E
C
.

S
I
Z
E

S
U
B
.

S
I
Z
E

D
E
C
.

S
U
B
.

R
E
C
.

P
C
T

1
S
N

S
u
p
e
r
n
o
v
a

N
u
m
b
e
r

A
S

0
Y
E
S

3
1
1

2
5
9

1
0
0
.
0
0
%

2
z
l

Z
w
i
c
k
y

I

S
y
s
t
e
m

A
S

0
3

1
0
8

4
1
.
7
0
%

3
z
i
t

Z
w
i
c
k
y

I
I

S
y
s
t
e
m

A
S

0
3

2
0
4

7
8
.
7
G
%

4
D
e
s
i
g
n
a
t
i
o
n

O
t
h
e
r

D
e
s
i
g
n
a
t
i
o
n

A
S

0
7
0

4
7

1
8
.
1
5
%

5
G
a
l
a
x
y

P
A
r
e
n
t

G
a
l
a
x
y

A
S

0
7
9

1
5
7

6
0
.
6
2
%

6
A
l
p
h
a

R
i
g
h
t

A
s
c
e
n
s
i
o
n

1
9
5
0
.
0

A
S

0
7

2
3
4

9
0
.
3
5
%

7
D
e
l
t
a

D
e
c
l
i
n
a
t
i
o
n

1
9
5
0
.
0

A
S

0
6

2
3
5

9
0
.
7
3
%

8
M
o
r
p
h
o
l
o
g
y

M
o
r
p
h
o
l
o
g
y

o
f

P
a
r
e
n
t

A
S

0
8

2
4
1

9
3
.
0
5
%

9
M
o

P
h
o
t
o
g
r
a
p
h
i
c

m
a
g
n
i
t
u
d
e

o
f

P
a
r
e
n
t

A
S

0
1
1

2
2
4

8
6
.
4
9
%

1
0

V
s

R
e
c
e
s
s
i
o
n

V
e
l
o
c
i
t
y

i
n

k
m

/
s

S
0

6
4

1
0
7

4
1
.
3
1
%

1
1

1
2

C
l
u
s
t
e
r

1
2

C
l
u
s
t
e
r

M
e
m
b
e
r
s
h
i
p

o
f

p
a
r
e
n
t

G
a
l
a
c
t
i
c

l
o
n
g
i
t
u
d
e

A A
S

0

S
2

1
3 9

9
2

2
5
8

3
5
.
5
2
%

9
9
.
6
1
%

1
3

b
2

G
a
l
a
c
t
i
c

l
a
t
i
t
u
d
e

A
S

0
2

7
2
5
7

9
9
.
2
3
%

1
4

m
a
x
d
a
t
e

D
a
t
e

o
f

M
a
x
i
m
u
m

A
S

0
1
4

2
5
8

9
9
.
6
1
1

1
5

D
i
s
c
o
v
e
r
y

D
a
t
e

o
f

d
i
s
c
o
v
e
r
y

A
S

0
4

2
5
5

9
8
.
4
6
1

1
6

M
a
g
n
i
t
u
d
e

M
a
x
i
m
u
m

p
h
o
t
o
g
r
a
p
h
i
c

m
a
g
n
i
t
u
d
e

A
S

0
1
0

2
4
5

9
4
.
5
9
%

1
7

P
o
s
i
t
i
o
n

.

P
o
s
i
t
i
o
n

i
n

g
a
l
a
x
y

A
S

0
2
7

2
4
0

9
2
.
6
6
%

1
8

1
9

T
y
p
e

D
i
s
c
o
v
e
r
e
r

T
y
p
e

o
f

s
u
p
e
r
n
o
v
a

N
a
m
e

o
f

d
i
s
c
o
v
e
r
e
r

A A
S

0

S
0

1
0
7
2

1
0
1

2
4
3

3
9
.
0
0
%

9
3
.
8
2
%

2
0

R
e
m
a
r
k
s

R
e
m
a
r
k
s

A
S

0
7
1

4
5

1
7
.
3
7
%

2
1

A
u
t
h
o
r
s

A
u
t
h
o
r
s

A
M

0
1
0

0
C

0
.
0

2
2
2
3

S
o
u
r
c
e
s

I
n
f
o
r
m
a
t
i
o
n

B
i
b
l
i
o
g
r
a
p
h
i
c

r
e
f
e
r
e
n
c
e
s

I
n
f
o
r
m
a
t
i
o
n

i
n

a
r
t
i
c
l
e

A A
M

0

M
0

1
5

0 0

0 0

0
.
0

%

0
.
0

%

